9 research outputs found

    Cross-View Visual Geo-Localization for Outdoor Augmented Reality

    Full text link
    Precise estimation of global orientation and location is critical to ensure a compelling outdoor Augmented Reality (AR) experience. We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database. Recently, neural network-based methods have shown state-of-the-art performance in cross-view matching. However, most of the prior works focus only on location estimation, ignoring orientation, which cannot meet the requirements in outdoor AR applications. We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation. Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance. Furthermore, we present an approach to extend the single image query-based geo-localization approach by utilizing temporal information from a navigation pipeline for robust continuous geo-localization. Experimentation on several large-scale real-world video sequences demonstrates that our approach enables high-precision and stable AR insertion.Comment: IEEE VR 202

    High-Precision Localization Using Visual Landmarks Fused with Range Data

    Get PDF
    Abstract Visual landmark matching with a pre-built landmark database is a popular technique for localization. Traditionally, landmar

    Quickest Detection of a Random Signal in Background Noise Using a Sensor Array

    Get PDF
    <p/> <p>The problem of detecting the onset of a signal impinging at an unknown angle on a sensor array is considered. An algorithm based on parallel CUSUM tests matched to each of a set of discrete beamforming angles is proposed. Analytical approximations are developed for the mean time between false alarms, and for the detection delay of this algorithm. Simulations are included to verify the results of this analysis.</p

    Visual odometry system using multiple stereo cameras and inertial measurement unit

    No full text
    Over the past decade, tremendous amount of research activity has focused around the problem of localization in GPS denied environments. Challenges with localization are highlighted in human wearable systems where the operator can freely move through both indoors and outdoors. In this paper, we present a robust method that addresses these challenges using a human wearable system with two pairs of backward and forward looking stereo cameras together with an inertial measurement unit (IMU). This algorithm can run in real-time with 15Hz update rate on a dual-core 2GHz laptop PC and it is designed to be a highly accurate local (relative) pose estimation mechanism acting as the front-end to a Simultaneous Localization and Mapping (SLAM) type method capable of global corrections through landmark matching. Extensive tests of our prototype system so far, reveal that without any global landmark matching, we achieve between 0.5 % and 1 % accuracy in localizing a person over a 500 meter travel indoors and outdoors. To our knowledge, such performance results with a real time system have not been reported before. 1

    Drift-correction techniques for scale-adaptive VR navigation

    No full text
    Scale adaptive techniques for VR navigation enable users to navigate spaces larger than the real space available, while allowing precise interaction when required. However, due to these techniques gradually scaling displacements as the user moves (changing user's speed), they introduce a Drift effect. That is, a user returning to the same point in VR will not return to the same point in the real space. This mismatch between the real/virtual spaces can grow over time, and turn the techniques unusable (i.e., users cannot reach their target locations). In this paper, we characterise and analyse the effects of Drift, highlighting its potential detrimental effects. We then propose two techniques to correct Drift effects and use a data driven approach (using navigation data from real users with a specific scale adaptive technique) to tune them, compare their performance and chose an optimum correction technique and configuration. Our user study, applying our technique in a different environment and with two different scale adaptive navigation techniques, shows that our correction technique can significantly reduce Drift effects and extend the life-span of the navigation techniques (i.e., time that they can be used before Drift draws targets unreachable), while not hindering users' experience
    corecore